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1 Introduction

The current proposal is focused on a basic (6.1) level research on full motion video analysis - a topic of importance

to the U.S. Air Force - with a potential impact on image analysis, characterization and exploitation. The amount of

full motion video clips that we process has grown exponentially. These images are typically acquired for surveillance

purpose, collected persistently over a fixed field of view, albeit with varying degrees of relative motion between the

camera and objects within the scene. The key challenge is to handle the complexities (including loss of resolution)

that arise from space-varying local blurring due to camera motion.

Recent times have seen the resurgence of motion blur as an area of great interest to computer vision and image

processing researchers. Motion blur results when there is relative motion between the camera and the scene. For

planar scenes, the shape of the blur kernel is a function of camera motion while the weights of the kernel can be

related to the exposure time corresponding to the set of geometric transformations that the camera traversed along

its motion trajectory. Motion blur has acquired special significance with hand-held imaging, aerial imaging, and

imaging ‘on the move’ shooting into prominence. It is also relevant to situations where the camera is still but the

scene comprises of several moving objects.

Motion blurring is both a bane and a boon. Most works treat motion blur as nuisance and seek ways and means
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to mitigate its effects so as to restore the original image. Unlike the optical blur, motion-blur can be space-varying

even when the scene is planar; an example case is that of a rotating camera imaging a distant scene. However, it

must be emphasized that motion blur can also serve as a vital cue for camera motion estimation, depth recovery,

super-resolution, image forensics, etc.

In this report, we discuss the efforts carried out jointly with Dr. Guna Seetharaman during the period Oct. 1,

2013 to Sept. 30, 2014. There was regular exchange of information between the PI and the AFRL collaborator

including physical meetings along the sidelines of conferences. We first invesgated the recovery of normal of a planar

sccene imaged by a moving camera. Here, the motion blur is harnessed as a cue for estimation of normal since the

extent of motion blur at an image point is dictated both by scene structure and camera motion. We have developed

a scheme for recovering the orientation of a planar scene from a single translationally-motion blurred image. By

leveraging the homography relationship among image coordinates of 3D points lying on a plane, and by exploiting

natural correspondences among the extremities of the blur kernels derived from the motion blurred observation, the

proposed method can accurately infer the normal of the planar surface. We validate our approach on synthetic as well

as real planar scenes.

Next, we addressed the problem of image registration using low-rank, sparse error matrix decomposition when

there are geometric as well as photometric differences in the given image pair. The additional challenge is to perform

registration and change detection for large motion blurred images. The unreasonable demand that this task puts on

computational and memory resources precludes the possibility of any direct attempt at solving this problem. We

handle this issue by observing the fact that the camera motion experienced by a sufficiently large sub-image is ap-

proximately the same as that of the entire image itself. We devise an algorithm for judicious sub-image selection so

that the camera motion can be deciphered correctly, irrespective of the presence or absence of occluder. We adopt a

reblur-difference framework to detect changes as this is an artifact-free pipeline unlike the traditional deblur-difference

approach. We demonstrate the results of our algorithm on both synthetic and real data.

Following this, we attempt to solve the problem of motion deblurring which has significant ramifications in aerial

imaging. Our work deals with deblurring of aerial imagery and we develop a methodology for blind restoration of

spatially varying blur induced by camera motion caused by instabilities of the moving platform. A sharp image is

beneficial not only from the perspective of visual appeal but also because it forms the basis for applications such as

moving object tracking, change detection, and robust feature extraction. In the presence of general camera motion,

the apparent motion of scene points in the image will vary at different locations resulting in space-variant blurring.

2
DISTRIBUTION A: Distribution approved for public release.



However, due to the large distances involved in aerial imaging, we show that the blurred image of the ground plane

can be expressed as a weighted average of geometrically warped instances of the original focused but unknown image.

The weight corresponding to each warp denotes the fraction of the total exposure duration the camera spent in that

pose. Given a single motion blurred aerial observation, we propose a scheme to estimate the original focused image

affected by arbitrarily-shaped blur kernels. The latent image and its associated warps are estimated by optimizing

suitably derived cost functions with judiciously chosen priors within an alternating minimization framework. Several

results are given on the challenging VIRAT aerial dataset for validation.

In the following sections, we discuss each of the above problems in more detail. While some of the results

of these efforts have already been published in IEEE conferences and journals, others are under review in

prestigious venues.

2 Normal Inference from a Single Motion Blurred Image

An extensively researched area in computer vision is the recovery of 3D structure from image intensities [1]. Well-

known cues for depth recovery include disparity, optical flow, texture, shading, defocus blur and motion blur, to

name a few. While estimation of 3D depth/shape has been of general interest, there have also been works targeting

the special case of inferring planar 3D geometry (such as the Manhattan model). This is due to the fact that the

world around us can, in many cases, be modeled as being piecewise planar. Approximating a 3D scene with planes

(where possible) has tremendous advantage in terms of reducing the computational complexity. Estimation of surface

normals of a scene/object plays a crucial role in identifying the 3D geometry/shape of that scene/object. The elegant

homography relationship between two images (original and transformed due to relative motion between camera and

scene) holds for scene points lying on a plane in the 3D world.

Estimating a plane involves finding its surface normal and the perpendicular distance from the center of the camera

to the plane. The relevance of this problem is evident from the many works that exist in the literature. Clark et al. [2]

implemented a technique to recover the orientation of text planes using perspective geometry. In [3], Farid et al. reveal

the fact that the projection of a planar texture having random phase leads to higher-order correlations in the frequency

domain, and these correlations are proportional to the orientaion of the plane. Greinera et al. [4] have proposed a

method to determine the surface normal using projective geometry and spectral analysis. Haines et al. [5] describe a

technique that makes use of prior training data gathered in an urban environment to classify planar/non-planar surfaces
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and to compute the orientaion of the planes.

We propose to use motion blur as a cue to estimate the orientation of a planar scene given a single motion blurred

image of the plane. Usually, blurring is considered as a nuisance whose effect needs to be removed. However, works

do exist that, in fact, use blur (optical/motion) as a cue to infer valuable information such as the depth of the scene

and relative motion of the camera with respect to the scene.

To the best of our knowledge, the only method to estimate plane orientation using blur as a cue is the recent work

by McCloskey et al. [6] who have proposed a method based on blur gradients to evaluate the planar orientaion (slant

and tilt angles) from a single image using optical blur as a cue. They exploit the relationship between blur variations

for the equifocal (fronto-parallel scene) plane and a plane’s tilt and slant angles. For a fronto-parallel scene, all the

pixels in the image have the same amount of blur. In the case of an inclined plane, the amount of blur varies inversely

with depth. The user has to manually mark a patch of interest for which slant and tilt angles are estimated. Their work

assumes a homogeneously textured observation.

We propose an interesting approach (a first of its kind) to determine the surface normal of a plane from a single

motion-blurred image. We exploit the homography relation that exists in the image domain under camera motion

to determine the surface normal. For a planar scene, the blurred image can be represented as a weighted average of

warped versions of the unblurred image. This representation helps in characterizing the space-variant blur by a set

of global homographies. We extract patches from the image and estimate blur kernels at these patches. Using the

correspondences among the extremities of blur kernels at different locations, we set up a system of linear equations

that are solved to yield the surface normal.

2.1 Planar motion blur

Motion blur in an image is due to relative motion between camera and scene during exposure time. Since the camera

sensor sees different scene points at different instants of time within the exposure window, these intensities get aver-

aged resulting in a blurred image. Let g be the blurred image captured by a camera with exposure timeEt, and let f be

the original image (without camera shake). During the exposure time, f may have undergone a set of transformations

due to relative motion between the camera and the scene. The transformed image at time instant τ can be explained

using homography Hτ as gτ (Hτ (x)) = f(x) where x represents pixel coordinates. Therefore, the blurred image can

be modeled as the average of transformed versions of f during the exposure time Et. The blurred image intensity at

4
DISTRIBUTION A: Distribution approved for public release.



a location x can then be expressed as

g(x) =
1

Et

∫ Et

0
f(H−1τ (x)) dτ

The homography relation in the image domain holds only for the set of scene points lying on a plane. The homography

at time instant τ is given by Hτ = K
(
Rτ + tτ

nT

d

)
K−1 where K =


q 0 0

0 q 0

0 0 1

, with q being the focal length of

the camera. HereRτ denotes the rotation matrix at time instant τ and is a combination of the rotational matrices about

the X,Y and Z axes, and d is the perpendicular distance from the center of the camera to the plane and is a constant

for the entire plane. Here, tτ = [TXτTYτTZτ ]T represents the 3D translation vector at time τ and n = [NX NY NZ ]T

denotes the surface normal of the planar scene. Following recent works, we assume that the motion blur is due to

camera translations only. Therefore, Rτ is a 3× 3 identity matrix (I) and the homography simplifies to

Hτ = K

(
I + tτ

nT

d

)
K−1. (1)

2.2 Normal from point-correspondences

The aim of our work is to use a single motion blurred image to estimate the surface normal of a planar scene. It is

straightforward to show that the blur kernel centered at location x can be written as

h(x,u) =
1

Et

∫ Et

0
δ(u− (Hτ (x)− x)) dτ (2)

i.e., the PSF represents the displacements undergone by an image point due to a set of motion transformations. The

blur kernel induced will ideally consist of impulses at the corresponding shifts, and the weight of the impulse will be

governed by the fraction of the exposure time spent in that homography/pose. For a fronto-parallel scene i.e., when

n = [0 0 1]T , the blur induced would be space-invariant when camera undergoes only in-plane translations in the

xy−plane. This is because for some transformation t = [TXτ TYτ 0]T and n = [0 0 1]T , we obtain
xτ

yτ

1

 =


1 0

qTXτ
d

0 1
qTYτ
d

0 0 1



x

y

1

 (3)

Clearly, the displacements in x and y directions are a constant (independent of the spatial location) and equal qTXτd

and qTYτ
d , respectively. However, for a general inclined plane, the blur induced would be space-variant (due to change
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in depth of the scene) even for pure in-plane translational motion. Corresponding to this situation, we will have (for

t = [TXτ TYτ 0]T )


xτ

yτ

1

 =


1 +NX

TXτ
d NY

TXτ
d qNZ

TXτ
d

NY
TYτ
d 1 +NY

TYτ
d qNZ

TYτ
d

0 0 1



x

y

1

 (4)

Note that the displacements along x and y are no longer a constant and, in fact, vary as a function of the spatial

location of the image point. Since our interest is in estimating the surface normal n = [NX NY NZ ]T (and not the

camera motion per se), we rewrite equation (4) as

[
xτ

]
=
[
x y 1

]


1 +NX
TXτ
d

NY
TXτ
d

qNZ
TXτ
d

 (5)

and

[
yτ

]
=
[
x y 1

]


NX
TYτ
d

1 +NY
TYτ
d

qNZ
TYτ
d

 (6)

In equations (5) and (6), assuming point correspondences between (x, y) and (xτ , yτ ) to be known, the unknowns are

NX , NY , NZ , TXτ , TYτ and d, and these appear in the right-most column vector. Note that the ratio TXτ
d (or TYτd ) is

a common scale factor multiplying the normal and hence need not be estimated. At first glance, it might appear that

one can enforce unit norm on the normal to reduce the unknowns by one. However, we refrain from doing so since

we lose the elegance of the linear equations (5) and (6) in the process. Thus, there are effectively three unknowns

(NX , NY , NZ) that are to be estimated. Hence, we need at least three point correspondences to solve this problem. If

we can find point displacements at other locations in the image corresponding to the same motion [TXτ TYτ 0]T , then

it should theoretically be possible to determine the unknowns. This, in fact, forms the basic premise for our method.

As discussed earlier in equation (2), the PSF or blur kernel encapsulates the displacements of pixels under the

influence of camera motion. Thus, if we can establish point-correspondences (all influenced by the same motion)

across atleast three blur kernels, then we can solve for the surface normal. However, because the blur kernel estimation

itself is prone to small errors, it is only prudent that we use as many correspondences as possible. Note that we need

to identify corresponding points among the PSFs with respect to the same homography. On this issue, we wish to
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point out an interesting fact that a natural correspondence exists among the extremities of blur kernels (i.e., non-zero

impulses at maximum distance from the origin of the PSF and on either side of the origin) across the image. We could

potentially use the left (or right) extremity of the blur kernel in equation (5) or (6). Although it might appear that

one can then solve for the normal, there is an ambiguity issue which we wish to highlight. Since the blur kernels are

estimated independently across the image, there is a possibility of incurring spatial shifts in the PSFs when employing

any blind deblurring method. A blurred patch b can be represented as convolution of latent patch l and blur kernel h

i.e., b = l ∗ h. Note that a shifted version (translational shift along x and y directions) of the true h also satisfies the

convolution relation because b(x) = l(x− s0) ∗ h(x + s0). The shift introduced in the blur kernel is equivalently

compensated in the latent image. Hence, if we choose only one extremity from the blur kernels, the surface normal

cannot be estimated correctly due to possible misalignment errors. In order to resolve this issue, we choose the

displacement between the extremities for computing correspondenes since this displacement is independent of any

shift in the blur kernel.

From equation (5), the extremity of a PSF (say h1) due to translation (say TXp) can be expressed as

[
xl1

]
=
[
x1 y1 1

]


1 +NX
TXp
d

NY
TXp
d

qNZ
TXp
d

 (7)

where (x1 y1) is the spatial-location of the origin of h1. Similarly, the x−coordinate of the right-extreme point of h1

due to another translation (say TXq ) will be

[
xr1

]
=
[
x1 y1 1

]


1 +NX
TXq
d

NY
TXq
d

qNZ
TXq
d

 (8)

Subtracting equation (7) from equation (8), we get

[
x41

]
=
[
x1 y1 1

]


NX
TXq−TXp

d

NY
TXq−TXp

d

qNZ
TXq−TXp

d

 (9)

where x41 indicates the difference between the x−coordinates of the two extreme points of the blur kernel h1. If we
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can determine M such PSFs in the given blurred image, then we have a set of M (≥ 3) linear equations given by

x41

x42

.

.

x4M


=



x1 y1 1

x2 y2 1

. . 1

. . 1

xM yM 1




NX

TXq−TXp
d

NY
TXq−TXp

d

qNZ
TXq−TXp

d

 (10)

where (xi yi) represents the spatial-location of the origin of the ith PSF. Note that
TXq−TXp

d is a constant that multiplies

every component of n and hence need not be estimated. Therefore, one can solve equation (10) using least-squares to

infer the surface normal.

The procedure explained above, in fact, is equally applicable to extreme points along the y direction too. Since our

scheme relies on pixel motion, we propose to use x4i or y4i , whichever is higher in magnitude. Note that the fronto-

parallel plane is a special case of our formulation in that the PSFs will be identical at all locations i.e, x4i = k ∀i

from which the solution can be inferred as n = [0 0 1]T .

Due to translational motion of the camera, the PSFs vary with the spatial location of the patch. A patch closer to

the camera contains more blur as compared to a patch farther away from the camera. To determine the extremities of

a PSF, we calculate the row sum and column sum of the PSF and choose the positions of the first and last non-zero

values of the PSF as extreme points. These points are indicated by red (left-most) and green (right-most) pixels. Pixels

with the same color constitute point correspondences. Therefore, all the red (green) points correspond to the same

homography.

2.2.1 PSF estimation

Although our interest is not in estimating camera motion, we need to determine PSFs at different spatial locations in

the blurred image. There exist several methods in the literature for blur kernel estimation. We used an off-the-shelf

blind motion deblurring technique [7] to estimate the blur kernel for a selected patch. Estimating the PSF from a

single motion blurred image is a very ill-posed problem since there exist many possible combinations of PSF and

latent image that can lead to the same blurred image. Hence, blind motion deblurring methods typically impose priors

on the PSF and the latent image. The method of [7] reveals that strong edges need not always lead to accurate PSF

estimation and employs a two-phase approach to estimate PSF. In the first phase, the authors define a metric to identify
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useful edges. These edges are considered to estimate a coarse blur kernel. In the second phase, an iterative support

detection method is used (instead of hard-thresholding) to estimate the sparse blur kernel. The method executes fast

and the accuracy of PSF estimation is also quite satisfactory [7].

2.3 Experiments

In this section, we validate the proposed method with examples, both synthetic and real. Since both PSF estimation

as well as extreme point detection can involve small errors, we propose to use about 8 point-correspondences (instead

of the minimum of 3) in equation (10) for robustness against noise. For the synthetic case, we choose focal length

q = 1200 pixels which is a practical value. For these experiments, we assumed a surface normal, applied a set

of homographies (camera translations) on an unblurred textured image, and computed the weighted average of the

transformed images to yield the blurred observation. For the real case, the focal length (usually in mm) is gathered

from the meta-data itself, and is converted into pixels using the sensor dimensions and the resolution of the image.

The value of d in equation (10) is the same for all the points lying on the plane and it can be any constant (other than

zero). In this work, we are interested only in the orientation of plane (and not in d which is embedded in the constant

that multiplies n in equation (10)).

2.3.1 Synthetic case

In the first example, we assumed a fronto-parallel planar scene (n = [0 0 1]T ). We applied a set of translations along

both x and y directions and the blurred image thus obtained is shown in Fig. 1(a). Due to the fronto-parallel nature

of the scene, all the 3D points are at the same distance from the camera and experience identical blur. We randomly

select eight (spatially well-separated) patches in Fig. 1(a) and estimate their PSFs using [7]. These PSFs are shown

in Fig. 1(b) and, as expected, have the same form. The extreme points in each PSF are detected as discussed earlier

in section III and the displacements between these points is substituted in equation (10) to solve for the normal. The

estimated normal turned out to be n̂ = [0 0.0632 0.998] which is quite close to the true normal.

Next, we use the same image as in the earlier example but assume an inclined plane with normal n = [−0.6428 0 0.7660].

Following the procedure outlined earlier for the fronto-parallel case, a blurred observation (Fig. 2(a)) was generated

using a set of transformations for the camera motion. We randomly selected eight patches (each of size 120 × 120

pixels) and the corresponding PSFs estimated using [7] are shown in Fig. 2(b). Note that the blur kernel is space-

variant, as expected. The extreme point correpondences among the blur kernels have also been indicated in Fig.
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(a)
(b)

Figure 1: (a) A fronto-parallel scene with translational blur. (b) PSFs estimated using [7] at random locations in (a).

(a)

(b)

Figure 2: (a) Inclined plane with motion blur. (b) PSFs estimated at different locations in (a).

4(b). From the displacements of the extremities, the normal was estimated using equation (10) by employing only the

x−translations. The result was n̂ = [−0.6007 0.0370 0.7986] which is close to the actual normal. The angular error

between the actual (red arrow) and the estimated normal (green arrow) is only 3.7 degrees as depicted in Fig. 2(a).

(a)
(b)

Figure 3: (a) Fronto-parallel blurred image. (b) PSFs estimated at different locations in (a).
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2.3.2 Real case

We used a Canon 60D camera to capture real data. The sensor width of the camera was 23.2 mm and the spatial

resolution was 720 × 480 pixels. For the real experiments, we employed a translational stage to induce translational

motion blur along both x and y directions.

In the first example, we captured a translationally blurred fronto-parallel textured board (Fig. 6(a)). Akin to the

synthetic case, we choose eight different patches (again of size 120×120 pixels) and determine the PSFs correspond-

ing to the center of these patches using [7]. The estimated PSFs are shown in Fig. 6(b) with extreme points marked.

The normal estimated using equation (10) was found to be n̂ = [0 0 1]. Since we know apriori that the scene is

(a) (d) (b) (e)

(c) (f)

Figure 4: (a)-(c) Blurred images of an inclined plane for different camera translations. (d)-(f) PSFs corresponding to

figures.(a)-(c), respectively.

fronto-parallel, we can conclude that the estimated normal is indeed correct.

Next, we captured a blurred image of an inclined plane as shown in Fig. 4(a). One can visually perceive the

space-variant nature of the blur in this image. We randomly picked eight patches and the estimated PSFs are shown

in Fig. 4(d). The extreme points in each PSF are represented with red (left-most) and green (right-most) colors.

By following the same procedure discussed in the earlier experiments, the surface normal was found to be n̂ =

[−0.4601 0.0970 0.8825]. Since, this is a real example, we do not know the true normal. We ascertain the correctness

of the estimated normal by capturing blurred images of the same plane but with two different camera translations.

Ideally, the estimated normals should be identical irrespective of the camera motion. We captured two more blurred
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images with different in-plane translations and these are shown in Figs. 4(b)-(c), with their corresponding PSFs

(Figs. 4(e)-(f)). The estimated normals were found to be n̂= [−0.4886 − 0.051 0.871] and [−0.4601 0.1400 0.8767]

respectively. Note that the estimated normals in all the three cases are quite close to one another reaffirming the

correctness of our procedure. Furthermore, we physically measured the orientation of the plane and found it to be 30

degrees. This is indeed close to the value of 28 degrees obtained using the proposed method.

(a)

(b)

Figure 5: (a) Planar surface with motion blur. (b) PSFs estimated at different locations in (a).

We show another real example in Fig. 5(a). We captured an outdoor ground-plane with the optical axis of the

camera approximately parallel to the ground-plane. The focal length was 18 mm. From Fig. 5(a), we observe that the

image has significant variations in blur. The lower portion of the image (close to the camera) has more blur compared

to the upper portion (far from the camera). To recover surface normal, we selected eight patches such that the patches

were spreadout across the image. Their estimated PSFs are shown in Fig. 5(b). From the PSFs, we can infer that the

translation is more prevalant along the x−direction. The detected extremities in each PSF are also indicated in Fig.

5(b). By following the procedure discussed earlier, the normal was computed as [0.1373 0.9800 0.1442]. Because the

optical axis was not exactly parallel to the plane, the resultant angle turns out to be 81 degrees which is as expected.

In the final example, a planar scene was imaged as shown in Fig. 6(a). The bottom of the plane is closest to

the camera while the top edge of the plane is the farthest. The focal length of the camera (18 mm) was obtained

from the image meta-data. Using sensor dimensions and image size, the focal length translates to 581 pixels. We

randomly picked eight patches throughout the image and their corresponding PSFs are shown in Fig. 6(b). After

substituting the focal length and displacements of each PSF in equation (10), the computed surface normal was found

to be [0 − 0.3713 0.9151] and is indicated by a green arrow.
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(a)

(b)

Figure 6: (a) A planar surface with translational motion blur. (b) Blur kernels extracted at different spatial locations

in (a).

3 Efficient Change Detection for Large Motion Blurred Images

Feature-based approach is commonly used in image registration. There are several methods for feature extraction

such as SIFT, SURF, ORB and MSER (Lowe et al. [8], Bay et al. [9], Rublee et al. [10], Matas et al. [11]). These

algorithms are primarily designed to work on small to medium-sized images. Memory requirement is an important

factor to consider when employing these approaches for high resolution images. Huo et al. [12] showed that SIFT

features require a prohibitively huge amount of memory for very large images. Another drawback of feature-based

approaches while working on large images is incorrect feature matching due to the occurrence of multiple instances

of similar objects across the image (Carleer et al. [13]). Coarse-to-fine strategies for feature matching are followed by

Yu et al. [14] and Huo et al. [12] to enable matching.

Within the scope of the problem tackled here, there is yet another deterrent in adopting feature-based approach

and that is blur. Motion blur is a common occurrence in aerial imagery where the imaging vehicle is always on the

move. In addition to geometric matching, photometric matching becomes essential in such a scenario. Feature-based

approaches are not designed to handle the presence of blur and fail to reliably detect features in the presence of blur.

A traditional approach to handle this situation is to first deblur the observation, and then pass on the resultant image

to the change detection pipeline where it is compared with a clean reference image after feature-based registration.

A number of approaches already exist in the literature to perform deblurring. Blind deconvolution methods recover

a sharp image from the blurred image with an unknown blur kernel under the assumption of space-invariant blur.

Fergus et al. [15] take a natural image statistics based Bayesian approach to estimate the blur kernel and deblur using

Richardson-Lucy algorithm. A two-phase approach with kernel initialisation using edge priors and kernel refinement
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based on iterative support detection is employed by Xu et al. [16] for kernel estimation, and the deblurring is sought

through TV-`1 deconvolution. Space-variant blur based approaches include that of Gupta et al. [17] who model

a motion density function to represent the time spent in each camera pose and to generate spatially varying blur

kernels and eventually restore the deblurred image using a gradient-based optimisation. Whyte et al. [18] define a

transformation spread function for space-variant blur similar to the point spread function for space-invariant blur to

restore the motion blurred image using MAP approach. Hu et al. [19] estimate weights for each camera pose in a

restricted pose space using a backprojection model while deblurring is carried out by employing a gradient-based

prior. Leveraging gradient sparsity, Xu et al. [20] proposed a unified framework to perform both uniform and non-

uniform image deblurring.

An issue with such a deblur-difference framework is that it must deal with the annoying problem of artifacts that

tend to get introduced during the course of deblurring. A more serious issue within the context of this work is that

none of the deblurring methods are designed to handle very large images. Furthermore, the deblurring methods would

fail if the occluder was not static since the image will then be governed by two independent motions.

In the problem of change detection, the goal is to detect the difference between a reference image with no artifacts

and an observed image which is blurred and has viewpoint changes as well. We develop a unified framework to

register the reference image with the blurred image and also to detect occlusions simultaneously. The occluder is

not constrained to be static. To address the issue of image size, we reveal that the camera motion can be elegantly

extracted from only a part of the observation. For reasons discussed earlier, we follow a reblur-difference pipeline

instead of a deblur-difference pipeline. While Punnappurath et al. [21] also followed a reblur-difference strategy,

our work is more general and, in fact, subsumes their work. Specifically, we use an optimisation framework with

partial non-negative constraint which can handle occlusions of any polarity, and we efficiently tackle the issue of large

image dimension. In addition, our algorithm can also deal with dynamic occluders. In our approach, the estimated

camera motion is used to reblur the reference image to photometrically match it with the observed image, and thereby

detecting the changes.

We develop a scheme to automatically select good sub-images from the given observation to enable reliable

estimation of the camera motion. We propose a memory and computationally efficient registration scheme to estimate

the camera motion from the selected sub-image, irrespective of the presence or absence of occlusions in the sub-

image. We advocate a reblur-difference pipeline for geometric as well as photometric registration of the reference

image and the blurred observation for robust change detection.
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3.1 Blur, Registration and Occlusion

In this section, we briefly discuss motion blur model in a camera. We then show how to invoke an optimisation

framework to simultaneously register the reference image with the blurred image as well as detect occlusions, if any.

3.1.1 Motion Blur Model

Each pixel in a digital camera embeds a sensor which collects photons from the scene. A digital circuit provides the

intensity value based on the number of photons received. All the pixels are exposed for a finite amount of period Te

which is the exposure time of the image. The resultant intensity at each pixel is the average of all intensities that the

pixel sees during the exposure period. Let us denote the camera path during the image exposure period by p(t) for

0 ≤ t ≤ Te. Let f represent the image observed by the camera during an infinitesimal amount of time. Let g be the

image observed by the camera with an exposure time Te. Let the number of rows and columns in the images be M

and N respectively, so that f , g ∈ RMN×1. Then, we have

g =
1

Te

∫ Te

0
fp(t) dt. (11)

where fp(t) is the image observed by the camera due to the pose p(t) at a particular time t.

When there is no motion, the camera observes the same scene during the entire exposure time, and hence a clean

image without any blur is observed. In this case, p(t) = 0 for all 0 ≤ t ≤ Te, and g = f . Thus f represents also the

image seen by the camera with no motion during the exposure time Te. In the presence of camera motion, the sensor

array records different scenes at every instant during the exposure time. The resultant image thus embodies blur in it,

and we have g 6= f .

We discretise the continuous model in (11) with respect to a finite camera pose space P . We assume that the

camera can undergo only a finite set of poses during the exposure time. Let us define P = {p}|P|i=1 as the set of

possible camera poses. We can write (11) equivalently as

g =
∑
pk∈P

ωpk fpk (12)

where fpk is the warped reference image f due to the camera pose pk. Each scalar ωpk represents the fraction of

exposure time that the camera stayed in the pose pk. Thus we have
∑

pk
ωpk = 1 if the camera takes only the poses

from the defined pose set P . The weights of all poses are stacked in the pose weight vector ω. Since the averaging
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effect removes the time dependency of the continuous camera path p(t), this discretisation model is valid. We assume

that the scene is far enough from the camera such that planarity can be assumed.

3.1.2 Joint Registration and Occlusion Detection

We now consider the problem of estimation of camera poses during exposure. Given a reference image f which

is captured with no camera motion, and a blurred image g arising from an unknown camera motion, the following

problem can be posed to solve for the camera motion.

ω̃ = min ‖g − Fω‖22 + λ‖ω‖1 subject to ω � 0 (13)

Here F is the matrix which contains the warped copies of the reference image f in its columns for the camera poses in

P . In the whole pose space, the camera can be moved through only a small set of poses. This is prioritised as the `1

norm in (13) which promotes sparsity of the pose weight vector. The above problem seeks the sparsest non-negative

pose weight vector which satisfies the relation between reference and blurred images. Matrix-vector multiplication

Fω is an equivalent form of (12).

This model, however, does not accommodate occluding objects in the observation g although this is quite often the

case in aerial surveillance systems. To handle this, let gocc be the observed image captured with blur and occlusions.

We model the occlusion as an additive term to g to give gocc = g + χ. The occluded image χ can take both positive

and negative values since the occluded pixels can have intensities greater or lesser than the intensities purely explained

by blur. This model can then be written as

gocc =
[
F IN

]ω
χ

 = Aξ. (14)

Here A is a combined dictionary of warped reference images to represent blur and the N × N identity matrix

to represent occlusions, where ξ is the combined weight vector, the first |P| elements of which represent the pose

weight ω and the remaining N elements represent the occlusion vector χ. To solve this under-determined system, we

leverage the prior information about the camera motion and occlusion, viz. the sparsity of the camera motion in the

pose space and the sparsity of the occlusion in the spatial domain. Thus we impose `1 norm prior on ξ. We estimate

the combined weight vector by solving the following optimisation problem.

ξ̃ = arg min
ξ
‖gocc −Aξ‖22 + λ‖ξ‖1 subject to Cξ � 0 (15)
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where C =

I|P| 0

0 0

. As mentioned earlier, the occlusion vector can take both positive and negative values.

Thus, unlike the work of Punnappurath et al. [21] who modify the signs of the identity matrix, we neatly impose

non-negativity constraint only on the elements of the pose weight vector.

3.2 Registration of Very Large Images

Building the matrix A in (14) is a crucial step in our problem. The occlusion part of the matrix IN can be stored

and processed efficiently since it is a diagonal matrix. The first part of the matrix F contains the warped versions of

f for all the poses in P . Though the reference image f operates in the intensity range [0-255] and requires only an

unsigned 8-bit integer for each pixel, this is not the case for the storage of the warped versions. The pixel values of

the warped image fpk can take floating-point values due to bilinear interpolation during its generation. A round-off

during the interpolation makes the equality in (12) only approximate, and hence it might lead to a wrong solution.

A single warped image needs MNd bits of storage memory for operation, where d is the number of bits required to

store a floating-point number. For even a 25 mega-pixel image with 5000 rows and 5000 columns and with d = 32

bits, a warped image requires 5000 × 5000 × 32 bits, that is 95.3 megabytes. If all three colour channels are used,

this value will triple. Storing all warps for the pose space as the matrix F thus warrants a huge amount of memory

allocation which is infeasible in practical situations.

3.2.1 Pose Weight Estimation from Sub-images

Our solution to the large image problem stems from the interesting observation that all the pixels in an image observe

the same camera motion during the exposure period. We leverage this fact to estimate the pose weight vector from a

subset of pixels in the image. Let f (S) and g(S) represent a portion of the reference and blurred images, respectively.

The sub-image size is S×S, and f (S),g(S) ∈ RS2×1. We call these, respectively, as reference sub-image and blurred

sub-image. We will ignore the presence of occlusion in this discussion for clarity. The relation in (12) holds for f (S)

and g(S) as well i.e.

g(S) =
∑
pk∈P

ωpk f
(S)
pk (16)

The estimated pose weight vector ω will be the same irrespective of whether we use f and g or f (S) and g(S) in

(13). We propose to estimate the camera motion using only the sub-images thus effectively circumventing the issue
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Figure 7: Shown are some of the reference (top row) and blurred (bottom row) images used in our experiments in

Section 3.2.

of memory storage.

To verify our proposition, we now perform experiments to estimate camera motion from sub-images of large

synthetically blurred images. We simulate five different continuous camera paths for a predefined set of discrete

translation and rotation ranges. We use a set of five images for this experiment. We thus have a set of five reference

images f and 25 blurred images g. Some of the reference and blurred images are shown in Fig. 7. We pick a pair

of f and g, and for a given S we pick the sub-images f (S) and g(S). Using these two images, we estimate the pose

weight vector ω using (13). Since the motion involves combinations of rotations and translations, direct comparison

of original and estimated motion vectors may not lead to a correct measure of error. Hence we measure the success of

our estimation by reblurring. We warp f using the poses in P with the estimated weights ω̃, and perform a weighted

average of the warps, resulting in a reblurred reference image f . We then calculate the reconstruction PSNR of the

reblurred reference image with respect to the original blurred image g. If the motion estimation from the sub-image is

correct, then the reblurred image will be close in appearance to the original blurred image resulting in a high PSNR.

We repeat this experiment for different values of S. The variation of PSNR with respect to S is shown in Fig. 8(a) for

image sizes of 1000× 1000 and 2000× 2000.

For small values of S, the variation of motion blur within the sub-image will be small and will approximately tend

to mimic space-invariant blur. Hence solving (13) results in a wrong pose weight estimate which results in a poor

PSNR between the reblurred and blurred images. The PSNR increases as S increases since the blur variation inside

the sub-image also increases. We observe that the PSNR value stabilises after a particular value of S. Beyond this
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(a) (b)

Figure 8: (a) PSNR in dB, and (b) correlation measure (for different sub-image sizes S). Original image sizes are

1000× 1000 (blue circle) and 2000× 2000 (red square).

S = 100 S = 300 S = 600

Figure 9: Estimated blur kernels for different sub-image sizes S. The blur kernels are displayed as binary images with

non-zero values shown in white colour.

point, any further increase in S results only in marginal benefits in terms of correct estimation of pose weights. The

size of the sub-image is an important factor in estimating the true camera motion. Too small an S renders the notion

of space-variant blur inside the sub-image invalid, and results in a wrong pose weight estimate. Too large an S will

kindle storage and processing problems. In the following subsection, we formulate a method to automatically choose

good sub-images for reliably estimating the camera motion.
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3.2.2 Choosing a Good Sub-image

It is important to devise an automatic method to select a sub-image of a particular size at a particular location from the

given large blurred observation. We develop a measure that would indicate the quality of the selected sub-image for

estimating the camera motion. Given a pair of reference and blurred sub-images f (S) and g(S) of size S, we randomly

select Nh scattered locations across the image. We crop small patches, f (S)k and g
(S)
k , from f (S) and g(S) respectively,

for k = 1 to Nh. We approximate the blur to be space-invariant in these patches, and estimate blur kernels using (13)

allowing the pose space to contain only in-plane translations. Let us denote these blur kernels by hk for k = 1 to Nh.

If the selected sub-image has sufficient variations in blur across it, then each of these blur kernels will be different

as they are quite spread out spatially. Hence a comparison of these estimated kernels is a good way to decide the

suitability of the sub-image for motion estimation. We advocate the use of normalised cross-correlation of the kernels

for this decision. Normalised cross-correlation between two 2D kernels hi and hj is given by

NCC(hi,hj) =
corr(hi,hj)

‖hi‖2‖hj‖2
. (17)

Values of the matrix NCC lie in [0, 1]. We use the maximum value of this matrix as our measure to compare the blur

kernels, i.e.,

Correlation measure m(hi,hj) = max NCC(hi,hj) (18)

Note thatm(hi,hj) attains a peak value of 1 if the two blur kernels are same. If the sub-image size is small, then there

will not be sufficient blur variations across it, and our measure value will be close to 1. If the kernels are dissimilar,

then m takes values close to 0.

Fig. 9 shows four blur kernels of the patches that are extracted randomly from sub-images of sizes S = 100, 300

and 600. The patch size used is 41× 41 and Nh = 4. Blur kernels corresponding to space-invariant blur will appear

the same irrespective of the spatial point. For a small sub-image of size S = 100, it can be clearly observed that the

four kernels are similar. Hence the camera motion cannot be correctly explained by this sub-image. For S = 300, the

blur kernels are more dissimilar, and for S = 600, they look completely different. Thus, higher values of S describe

the motion better. From these four blur kernels, six measure values m are estimated for every pair. Fig. 8 (b) shows

the plot of mean m of these six values with respect to the sub-image size. The curve falls with increase in sub-image

size as expected due to continuous decrease in kernel similarity. A synonymity can be observed between the plots in

Figs. 8 (a) and (b). Correlation measure decreases initially with increasing S and stays almost constant after a certain
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Figure 10: (a) PSNR in dB for S = 600 and different occlusion sizes K.

value of S. Similarly, the reconstruction PSNR stabilises after it reaches a particular sub-image size. Based on these

observations, we define a threshold Tm = 0.6 m100, where m100 is the correlation measure for S = 100, to accept or

reject a sub-image for motion estimation. If mS0 for a sub-image of a specific size S0 is less than this threshold, we

decide that the quality of the selected sub-image of size S0 is good, and that the camera motion can be estimated from

it.

3.2.3 Presence of Occlusion

A natural question to ask is how well our algorithm fares when there is occlusion in the selected sub-image itself. We

add a random occlusion patch of size K×K to the reference image f . We blur this image using the generated camera

motion path, the resultant image being gocc. We slice the sub-images f (S) and g
(S)
occ , from f and gocc respectively. We

do not restrict the position of the sub-image with respect to the occlusion. Therefore, the sub-image can either include

the full occlusion or a part of the occlusion or be devoid of the occlusion completely. Our combined dictionary A in

(14) tackles both the presence of blur and occlusion simultaneously. If occlusion is present either fully or partially, it

would be accommodated by the weights of the identity matrix in A. If there is no occlusion present, then the occlusion

weight vector will be zero. Thus, irrespective of the absence or presence (complete or partial) of the occluder in the

sub-image, our formulation can elegantly handle it.

We next discuss the effect of the size of the occlusion for a chosen sub-image size S. We consider the worst case

of the occlusion being present completely inside the chosen sub-image. We solve the optimisation problem in (15)

with f (S) and g
(S)
occ to arrive at the combined pose weight and occlusion weight vectors. Using the estimated ω̃, we

reblur the large reference image f . We compare this reblurred image with the large blurred image gocc ignoring the

values in the occlusion region, since this comparison is to verify the success of our motion estimation. Fig. 10 shows
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how the PSNR varies with respect to the value of K for S = 600. We note that our algorithm tackles the presence

of occlusion quite well. The motion estimation is correct and thus PSNR values are good even when the occluder

occupies up to half the sub-image area.

Algorithm 1 shows our complete framework of choosing good sub-images automatically, estimation of motion

and change detection. In our experiments, we use an α value of 5 and the upper limit of S, Smax, is chosen as 900

based on the many experiments we carried out.

Algorithm 1:
Inputs: Reference image f , blurred and occluded image

g.

Init: Pick four sub-images f (100) based on Hu et al. [22],

extract blur kernels and calculate m for each of the ker-

nels. Average the four values to get m100.

Let S = 200.

1. Pick a sub-image of size S. Ifm < 0.6m100, goto

Step 5. Else, choose a different sub-image of the

same size at a different location.

2. If a particular S is chosen α times, update S ←

S + 100. Goto Step 2.

3. If S > Smax, declare blur to be space-invariant.

Use one of the estimated blur kernels itself as the

camera pose weight vector. Goto Step 6.

4. Estimate pose weight vector and occlusion weight

vector for the selected sub-images f (S) and g(S)

using (15).

5. Reblur the original reference image f using the es-

timated pose weight vector ω̃.

6. Detect the changes by differencing the reblurred

image and the original blurred image g.
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3.3 Experiments

We first evaluate the performance of our algorithm using a synthetic example. A reference image of size 2188× 1315

pixels is shown in Fig. 11(a). We selected the pose space as follows- in-plane translations: [−8:1:8] pixels, in-plane

rotations: [−3◦ : 1◦ : 3◦]. These ranges are also practically meaningful. To simulate blur incurred due to camera

shake, we manually generated camera motion with a connected path in the pose space and initialized the weights. The

synthesized camera motion was then applied on the same scene taken from a different view point with synthetically

added occluders to produce the blurred and occluded image in Fig. 11(b).

To evaluate the proposed method, we followed the steps outlined in Algorithm 1, selected four sub-images (based

on Hu et al. [22]) of size 100 × 100 pixels, and calculated m100 independently for each. The average value of m100

was computed. Next, we picked a sub-image of size 200 × 200 pixels and calculated m. The four kernels computed

within the sub-image bore a large degree of similarity indicating that the space-varying nature of the blur was not

being captured at this size. This step was repeated for five different sub-images of size 200× 200 pixels but the value

of m they yielded was approximately equal to m100 revealing that only a bigger sized sub-image can encapsulate the

space-varying camera motion. Our algorithm converged for a sub-image of size 500×500 pixels where the computed

m was less than 0.6 m100. The selected sub-images of size 500 × 500 pixels from the focused, and the blurred

and occluded input images are shown in Figs. 11(c) and 11(d), respectively. The position of these sub-images have

been indicated by red boxes in Figs. 11(a) and (b). Note that the selected sub-image, incidentally, does not contain

any occlusion. To handle pose changes between the two images, we first coarsely aligned the reference image and

the blurred and occluded image at a lower resolution using a multiscale implementation similar to [21]. Fig. 11(e)

shows the reference image reblurred using the estimated ω̃. The detected occlusions shown in Fig. 11(f) are found by

comparing the blurred and occluded observation (Fig. 11(b)) with the reblurred reference image (Fig. 11(e)).

For our next experiment, we use the publicly available VIRAT database (Oh et al. [23]) which is a benchmark for

video surveillance and change detection. Two frames corresponding to the reference image and the occluded image

(shown in Figs. 12(a) and (b), respectively) were manually extracted from an aerial video. The frames are at the

resolution of the original video i.e., 720×480 pixels. Since the resolution is low, we run our algorithm directly on the

whole image instead of a sub-image. The detected occlusion is shown in Fig. 12(c). Although, strictly speaking, the

images are not high resolution at all, the purpose is to demonstrate the efficiency of our method for aerial imaging.

Also, this example illustrates how the proposed method elegantly subsumes the work in [21] for the case of low
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(a) (b)

(c) (d)

(e) (f)

Figure 11: (a) Reference image, (b) synthetically blurred and occluded observation from a different view point, (c)

sub-image from (a), (d) sub-image from (b), (e) reference image reblurred using the estimated camera motion, and (f)

detected occlusion.
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(a) (b) (c)

Figure 12: (a) Reference image, (b) real blurred and occluded observation, and (c) detected occlusion.

(a) (b) (c)

Figure 13: (a) Reference image, (b) real blurred and occluded observation, and (c) multiple occluders found.

resolution images.

A final real example is shown in Fig. 13. The two images in Figs. 13 (a) and (b) were captured from the same

view point but with a small time lapse using a Google Nexus 4 mobile phone which has an 8 MP camera. Observe

how even small occluders with intensities close to the background are correctly detected by our algorithm (Fig. 13(c)).

This example threw up small spurious non-connected occlusions in the bottom half of the image due to movement of

leaves, and these were removed by simple post-processing.

To perform quantitative assessment of our method, we computed the following metrics which are well known in

the change detection community: percentage of correct classification (PCC), Jaccard coefficient (JC) and Yule coef-
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ficient (YC) [24]. For the real experiments, the ground-truth occlusion was assessed by asking different individuals

to locally mark out the occluded regions as per their individual perception. The efficacy of our algorithm is further

evident from the values in Table 1.

Table 1: Quantitative metrics for our results in Figs. 11 to 13.

Fig. PCC JC YC

11 99.5957 0.7792 0.9348

12 99.7195 0.6218 0.9211

13 99.3736 0.4557 0.8729

The maximum size of the images considered was 18 MP. Despite our best attempts, we could not find any database

containing image pairs of very large sizes (of the order of 100M) that could be used for testing. Nevertheless, the

framework proposed here has the potential to handle even very large images. Due to file size constraints, we have

included only the downscaled images in the pdf, and not the original high resolution images.

4 Space-variant Deblurring of Aerial Imagery

Blur in images resulting from motion of the camera during exposure time is an issue in many areas of optical imaging

such as remote sensing, aerial reconnaissance and digital photography. For instance, the images captured by cameras

attached to airplanes or helicopters are blurred due to both the forward motion of the aircraft, and vibrations. Manufac-

turers of aerial imaging systems employ compensation mechanisms such as gyroscope gimbals to mitigate the effect

of vibrations. Although this reduces the blur due to jitter to some extent, there is no straightforward way to do the

same for the forward movement. Moreover, these hardware solutions come at the expense of higher cost, weight and

energy consumption. A system that can remove the blur by algorithmic post-processing provides an elegant solution

to this problem.

Traditionally, image restoration techniques have modeled blurring due to camera shake as a convolution with a

single blur kernel [25, 26, 27, 28, 29]. However, it is a well-established fact that the convolution model that employs a

uniform blur kernel or point spread function (PSF) across the image is not sufficient to model the blurring phenomenon

if the motion is not composed merely of in-plane translations. In fact, camera tilts and rotations occur frequently [30]

and the blur induced by camera shake is typically non-uniform. This is especially true in the case of aerial imagery
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where the blur incurred is not just due to the linear motion of the aircraft but also due to vibrations. Approaches to

handling non-uniform blur broadly fall into two categories. The first relies on local uniformity of the blur. Based on

the assumption that a continuously varying blur can be approximated by a spatially varying combination of localized

uniform blurs, Hirsch et al. [31] propose a method to restore non-uniform motion blur by using an efficient filter

flow framework. Building on the idea of a motion density function, yet another scheme for space-varying blur has

been proposed by Gupta et al. [32]. The motion-blurred image is modeled by considering the camera motion to be

comprised only of in-plane translations and in-plane rotations. The second and more recent non-uniform deblurring

approach uses an elegant global model [30, 33, 34] in which the blurred image is represented as the weighted average

of warped instances of the latent image, for a constant depth scene. The warped instances can be viewed as the

intermediate images observed by the camera during the exposure time when the camera suffers a shake. Tai et al.

[35] have proposed a non-blind deblurring scheme based on modifying the Richardson Lucy deconvolution technique

for space-variant blur. However, they assume that the blurring function is known a priori and does not need to be

estimated. Whyte et al. [30, 36] propose a non-uniform image restoration technique where the blurring function is

represented on a 3D grid corresponding to the three directions of camera rotations. As pointed out in [34], the main

disadvantage of this global geometric model is heavy computational load due to the dense sampling of poses in the

high dimensional camera motion space. A common approach to tackle this problem is to adopt a multi-scale approach

that involves constructing an image pyramid and using coarse-grained sampling. But this simplification inevitably

introduces reconstruction errors [34]. Hu and Yang [34] present a fast non-uniform deblurring technique by using

locally estimated blur kernels to restrain the possible camera poses to a low-dimensional subspace. But the kernels

themselves need to be input by the user and the final deblurring quality is dependent on the accuracy of the estimated

PSFs. An unnatural L0 sparse representation for uniform and non-uniform deblurring has also been proposed recently

by Xu et al. [37]. In the hardware-assisted restoration techniques, Joshi et al. [38] attach sensors to the camera to

determine the blurring function, while Tai et al. [39] propose a deblurring scheme that uses coded exposure and some

simple user interactions to determine the PSF.

In this work, we propose a fully blind single image non-uniform deblurring algorithm suited for aerial imagery that

does not require any additional hardware. We reduce computational overhead by approximating the camera motion

with a 3D pose space and optimizing only over a subspace of ‘active’ camera poses. This reduction in dimensionality

allows us to use dense sampling and our results compare favourably with state-of-the-art deblurring algorithms. In

contrast to [34], our alternating minimization algorithm, which uses a novel camera pose initialization and pose
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perturbation step, works on the global geometric model and doesn’t require the calculation of blur kernels at various

image locations, thereby eliminating the need for user interaction.

4.1 The motion blur model

In this section, we review the non-uniform blur model for aerial images. Since the distances involved are quite large,

the ground scene can be modeled as being approximately planar. When the motion of the camera is not restricted

to in-plane translations, the paths traced by scene points in the image plane will vary across the image resulting in

space-variant blur. The convolution model with a single blur kernel does not hold in such a scenario. However, the

blurred image can be accurately modeled as the weighted average of warped instances of the latent image using the

projective model in [40, 30, 32, 34], when the scene is planar. In the discrete domain, this can be represented as

b (i, j) =
∑
k∈T

ω (k) l (Hk (i, j)) (19)

where l(i, j) denotes the latent image of the scene, b(i, j) is the blurred observation, and Hk(i, j) denotes the image

coordinates when a homography Hk is applied to the point (i, j). The parameter ω, also called the transformation

spread function (TSF) [40] in the literature, depicts the camera motion, and ω(k) denotes the fraction of the total

exposure duration for which the camera stayed in the position that caused the transformation Hk. Akin to a PSF,∑
k∈T ω (k) = 1. The TSF ω is defined on the discrete transformation space T which is the set of sampled camera

poses. The transformation space is discretized in such a manner that the difference in the displacements of a point

light source due to two different transformations from the discrete set T is at least one pixel. Note that although the

apparent motion of scene points in the image will vary at different locations when the camera motion is unrestricted,

the blurring operation can still be described by a single TSF using equation (19). For example, if the camera undergoes

only in-plane rotations, the TSF will have non-zero weights only for the rotational transformations. Observe that if

the camera motion is confined to 2D translations, the PSF and TSF will be equivalent.

If l, b represent the latent image and the blurred image, respectively, lexicographically ordered as vectors, then, in

matrix-vector notation, equation (19) can be expressed as

b = Aω (20)

where A is the matrix whose columns contain projectively transformed copies of l, andω denotes the vector of weights

ω(k). Note that ω is a sparse vector since the blur is typically due to incidental camera shake and only a small fraction
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of the poses in T will have non-zero weights in ω. Alternately, b can also be represented as

b =

(∑
k∈T

ω(k)Hk

)
l = Bl (21)

where Hk is the matrix that warps the latent image l according to the homography Hk, while B =
∑

k∈T ω(k)Hk

is the matrix that performs the non-uniform blurring operation. Note that B is a sparse square matrix that can be

efficiently stored in memory and each row of B corresponds to the blur kernel at that particular pixel location.

The homographyHk in equation (19) in terms of the camera parameters is given by

Hk = Kv

(
Rk +

1

d0
Tk[0 0 1]

)
K−1v (22)

where Tk=[TXk TYk TZk ]T is the translation vector, and d0 is the scene depth which is an unknown constant. The

rotation matrix Rk is parameterized [30] in terms of θX , θY and θZ , which are the angles of rotation about the three

axes. The camera intrinsic matrix Kv is assumed to be of the form Kv = diag(v, v, 1), where v is the focal length.

Six degrees of freedom arise from Tk and Rk (three each). However, it has been shown in [30] that the 6D camera

pose space can be approximated by 3D rotations without considering translations when the focal length is large. An

alternate approach [32, 34] is to model out-of-plane rotations by in-plane-translations under the same assumption of

a sufficiently long focal length. This is the approach that we also take to reduce the dimensionality of the problem

i.e., the set of transformations T becomes a 3D space defined by the axes tX , tY and θZ corresponding to in-plane

translations along the X and Y axes, and in-plane-rotations about the Z axis, respectively. The homography given in

the equation (22) then simplifies to

Hk =


cos θZk − sin θZk tXk

sin θZk cos θZk tYk

0 0 1

 (23)

where the translation parameters are given by tXk =
vTXk
d0

and tYk =
vTYk
d0

.

4.2 Single image deblurring

In order to recover the latent image l, our alternating minimization (AM) algorithm proceeds by updating the estimate

of the TSF at one step, and the latent image at the next. We minimize the following energy function over the variables

l and ω,

E(l,ω) = ||(
∑
k∈T

ω(k)Hk)l− b||22 + αΦ1(l) + βΦ2(ω). (24)
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The energy function consists of three terms. The first measures the fidelity to the data and emanates from our acqui-

sition model (21). The remaining two are regularization terms on the latent image l and the weights ω, respectively,

with positive weighting constants α and β that attract the minimum of E to an admissible set of solutions. The

regularization terms will be explained in the following sub-sections.

Our algorithm requires the user to specify a rough guess of the extent of the blur (translation in pixels along X,

Y axes and rotation in degrees about Z axis) to build the initial TSF. The 3D camera pose space, whose limits are

specified by the user, is uniformly sampled to select the initial set of camera poses. We denote this sampled pose

space by S where S ⊂ T. In our experiments, the initial TSF contained 200 poses which is still much smaller than

the 1500-2000 poses that the whole space T would contain even for small to moderate blurs.

Note that our algorithm requires no other user input. In contrast, Hu and Yang [34], whose work comes closest

to ours, requires the user to input the blur kernels at various locations in the image and we observed that the final

deblurring quality depends greatly on the number, location and correctness of these blur kernels. Furthermore, since

we model our blur using in-plane rotations and translations, we do not need to know the focal length of the camera as

in the case of [30] whose camera pose space is composed of 3D rotations.

In the TSF estimation step, we compute ω given the current estimate of the latent image l based on equation (24).

4.2.1 Image Prediction

Similar to [28], we perform an image prediction step at each iteration before TSF estimation to obtain more accurate

results and to facilitate faster convergence. The prediction step consists of bilateral filtering, shock filtering and

gradient magnitude thresholding. Details of the implementation can be found in [28]. The predicted image, denoted

by l̂, is sharper than the current estimate of the latent image l and has fewer artifacts.

4.2.2 TSF estimation on a subspace of T

In the first iteration, we optimize over the initial TSF by minimizing the following energy function

E(ω) = ||Aω − b||22 + βΦ2(ω) (25)

where A =
∑

k∈SHk̂l and Φ2(ω) = ||ω||1. Similar to [28], we work on gradients instead of image intensities

in our implementation of equation (25) since image derivatives have been shown to be effective in reducing ringing

effects [26]. This optimization problem can be solved using the nnLeastR function of the Lasso algorithm [41] which
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considers the additional l1 − norm constraint and imposes non-negativity on the TSF weights. Only the ‘dominant’

poses in the initial TSF S are selected as a result of the sparsity constraint imposed by the l1−norm and the remaining

poses which are outliers are removed. We now rebuild the set S for the second iteration so that its cardinality is the

same as the initial TSF. The new poses are picked around the selected dominant poses by sampling using a Gaussian

distribution. This pose perturbation step is based on the notion that the camera trajectory forms a connected 1D path in

the camera motion space and, therefore, the poses close to the dominant ones are most likely to be inliers. In the next

iteration, equation (25) is minimized over this new ‘active’ set of poses. The variance of the Gaussian distribution is

gradually reduced with iterations as the estimated TSF converges to the true TSF. Experiments on synthetic and real

data show that our pose perturbation step lends robustness to the algorithm and it does not get stuck in local minima.

Note that the number of columns in A equals the cardinality of the set S which is much less than the total number

of poses in T. This allows us to compute the matrix A at the highest image resolution without running into memory

issues. We used a β value of 0.1 for our experiments.

4.2.3 Iimage estimation

In this step, the latent image l is estimated by fixing the TSF weights ω. The blurring matrix is constructed using only

the poses in the active set since the the weights of the poses of the inactive set are zero, i.e. B =
∑

k∈S ω(k)Hk and

the energy function to be minimized takes the form

E(l) = ||Bl− b||22 + αΦ1(l) (26)

We use the regularization term Φ1(l) = || 5 l||22 in [28] and a conjugate gradient method to solve this problem.

4.3 Experiments

This section consists of two parts. We first evaluate the performance of our algorithm on synthetic data and also

compare our results with various state-of-the-art single image deblurring techniques. Following this, we demonstrate

the applicability of the proposed method on real images using the challenging VIRAT [42] aerial dataset.

We begin with a synthetic example. A latent image of size 720 × 600 pixels is shown in Fig. 14(a). In order

to demonstrate our algorithm’s ability to handle 6D motion using just a 3D TSF, we choose the following 6D TSF

space- in-plane translations in pixels: [−8 : 1 : 8], in-plane rotations: [−1.5◦ : 0.5◦ : 1.5◦], out-of-plane translations:

[0.95 : 0.05 : 1.05] on the image plane, and out-of-plane rotations: [−43
◦

: 1
3

◦
: 4
3

◦
].
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(a) (b) (c)

(d) (e) (f)

Figure 14: A synthetic example. Rows 1 and 2: (a) Latent image, (b) synthetically blurred image, (c), (d), (e)

deblurred outputs obtained using the state-of-the-art deconvolution methods in [37], [34], [30], respectively, (f)

deblurred output obtained using the proposed method. Rows 3,4 and 5: Three zoomed-in patches from the images (a)

to (f) demonstrating our algorithm’s ability to produce artifact-free deblurred outputs.
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Figure 15: Deblurring results on the VIRAT aerial database using the proposed method. The first column contains the

blurred frames while the second shows deblurred outputs obtained by our algorithm.

Xu et al. [37] Hu and Yang [34] Whyte et al. [30] Proposed method

PSNR (in dB) 20.47 19.50 21.68 25.25

SSIM [43] 0.550 0.470 0.597 0.725

Table 2: Comparison with state-of-the-art methods for the synthetic example in Fig. 14.
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To simulate the motion of the camera, we manually generate 6D camera motion with a connected path in the

motion space and initialize the weights. The pose weights in the TSF are defined in such a way that it depicts the

path traversed by a camera with non-uniform velocity. The camera motion thus synthesized is applied (using the TSF

model) on Fig. 14(a) to produce the blurred image in Fig. 14(b). The results obtained using the deblurring techniques

in [37], [34]and [30]are shown in Figs. 14(c),(d) and (e), respectively. To obtain the result in Fig. 14(f), the following

3D search intervals were input to our algorithm: in-plane translations in pixels: [−12 : 1 : 12], in-plane rotations:

[−2.5◦ : 0.25◦ : 2.5◦]. Our algorithm usually converges within 5 to 8 iterations under the criteria that the recovered

image does not change above a threshold between two successive iterations. Note that our result is sharp, free from

artifacts and compares closely to the original while the comparison methods have some residual blur. Quantitative

comparisons are also provided in Table 2.

It can be seen that the proposed method has higher PSNR and SSIM values as compared to the state-of-the-art.

Our algorithm and Hu and Yang [34] take approximately 25 minutes on a 3.4 GHz processor running Matlab. The

code of Whyte et al. [30] takes much longer in comparison. Although the Matlab implementation of Xu et al. [37]

(approximately 15 minutes) runs faster, the output is not satisfactory.

Next, we test our method on the publicly available VIRAT aerial dataset. Since the database contains videos, we

manually extracted some frames to run our algorithm. The frames, shown in the first column of Fig. 15, are at the

resolution of the original video i.e., 720 × 480 pixels. The results obtained using the proposed technique (shown in

the second column) clearly demonstrate our algorithm’s ability to produce excellent deblurring results even on real

data.

5 Conclusions and Future Work

We began by proposing a scheme, which we believe is the first of its kind, to estimate planar orientaion from a single

motion blurred image. We revealed the underlying relationship between the surface normal of a planar scene and

the induced space-variant nature of blur due to translational motion. Exploiting correspondences among the extreme

points of the PSFs, we constructed a set of linear equations whose solution yields the surface normal. The method was

validated on synthetic as well as real images. Since our method can explain planes, it offers a convenient platform for

attempting restoration of piecewise planar motion-blurred scenes.

34
DISTRIBUTION A: Distribution approved for public release.



Key Accomplishments

• We revealed how correspondences of extremities of blur kernels in a given observation can be used for estimat-

ing plane normal by leveraging the homography relationship among image coordinates lying on the plane. This

is the first ever attempt in the area of computer vision to propose correspondence theory within a single image.

As future work, we plan to relax the translational constraint and extend our method to the case of general camera

motion. Yet another direction to pursue is to automatically segment and estimate surface normals when the scene

consists of multiple planes.

Next, we proposed a framework to detect changes in blurred images of very large sizes. Traditional deblurring

techniques fail to cope with large image sizes, while feature-based approaches for change detection are rendered

invalid in the presence of blur. We developed an optimization problem which would perform registration in the

presence of blur and detect occlusions simultaneously. We devised an algorithm to choose good sub-images from

the large observations to estimate the camera motion thus alleviating issues related to memory and computational

resources.

Key Accomplishments

• A unified framework was proposed for registration and automatic detection of occlude(s) from a motion blurred

image pair using a low-rank, sparse error matrix decomposition based on sparsity prior. The method can work

on even very large image sizes (100 MB) consuming approximately the same power as required for an image

one-tenth the size.

As future work, we shall consider accommodating illumination variations into our framework.

We also described a methodology for blind restoration of aerial images degraded by blur due to camera motion.

Due to the large distances involved, we showed that the space-variant blurred image of the ground plane can be

expressed as a weighted average of geometrically warped instances of the original image. Given a single observation,

the latent image and its associated warps were estimated within an alternating minimization framework. Several

results were given on synthetic data as well as the challenging VIRAT aerial database for purpose of validation.

Key Accomplishments

• Based on the notion of a global transformation spread function, we proposed a multi -scale scheme to blindly

restore space-variant motion blurred images affected by arbitrarily-shaped blur kernels. Compared to state-of-

the-art, our multi-scale implementation with sparsity prior offers computational savings of more than 25%.
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Restoration under arbitrary inclination of the planar scene is an interesting topic for future research. Also, the esti-

mated camera motion itself can be potentially exploited as a valuable cue for stabilization.
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